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Vortex-induced vibrations at subcritical Re
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Flow past a stationary cylinder becomes unstable at Re ∼ 47. Flow-induced vibrations
of an elastically mounted cylinder, of low non-dimensional mass, is investigated at
subcritical Reynolds numbers. A stabilized finite-element formulation is used to solve
the incompressible flow equations and the cylinder motion in two dimensions. The
cylinder is free to vibrate in both the transverse and in-line directions. It is found
that, for certain natural frequencies of the spring–mass system, vortex shedding and
self-excited vibrations of the cylinder are possible for Re as low as 20. Lock-in is
observed in all cases. However, the mass of the oscillator plays a major role in
determining the proximity of the vortex-shedding frequency to the natural frequency
of the oscillator. A global linear stability analysis (LSA) for the combined flow and
oscillator is carried out. The results from the LSA are in good agreement with the
two-dimensional direct numerical simulations.

1. Introduction
The flow past a stationary circular cylinder becomes unstable at Re ∼ 47. This

instability, primarily due to the wake, results in von Kármán vortex shedding and
causes the cylinder to experience unsteady lift and drag forces. A cylinder mounted
on elastic supports may undergo vortex-induced vibrations (VIV) as a result of this
unsteadiness. It is well known that the motion of the cylinder can alter the flow
field significantly. Under certain conditions, the motion can cause the vortex-shedding
frequency to match the vibration frequency. This is referred to as lock-in or synchron-
ization. In addition, near the low and high ends of the lock-in regime, the flow and
cylinder response may exhibit hysteresis. For a comprehensive review of the research
on various aspects of VIV the reader is referred to Williamson & Govardhan (2004).

Almost all the investigations of flow-induced vibrations in the past have been
conducted for Re >Rec0, where Rec0 is the critical Reynolds number for the stationary
cylinder. The objective of the present work is to investigate VIV for Re <Rec0. One
question of interest is whether an elastically supported cylinder in a uniform flow
undergoes self-excited oscillations for Re <Rec0. Cossu & Morino (2000), from their
global stability analysis of an aeroelastic system, found that Rec for a cylinder with
fluid-to-solid density ratio larger than 1/70 is less than half that of the stationary-
structure case. They identified two significant modes for the vibrating cylinder. The
‘nearly structural’ mode corresponds to eigenvalues which, in the limit of very small
fluid/solid density ratio, tend to the characteristic (complex) frequency of the structure
in the absence of fluid. The other is the von Kármán mode that corresponds to a pair
of eigenvalues whose frequencies are almost identical to the leading eigenvalues of the
fluid-only system with a stationary structure. At Re =23.512, the von Kármán mode
is stable while the nearly structural one is unstable. Buffoni (2003) found that vortex
shedding could be triggered under subcritical conditions (25 <Re < 49) by forced
transverse vibrations of the cylinder at specific frequencies. Shedding is not observed
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at low frequencies at any Re. As the frequency is increased, the intensity of the vortex
shedding increases to its maximum level and then disappears. A relationship between
Re and the frequency at which the shedding is intense has been proposed. In the
present work, direct time integration of the flow equations along with the equations
of motion for the cylinder is carried out to investigate the aeroelastic instability for
Re< Rec0. The critical parameters, at the onset of the instability, are confirmed via
a global linear stability analysis. A stabilized space–time finite element formulation
(Tezduyar, Behr & Liou 1992a; Tezduyar et al. 1992b; Mittal & Tezduyar 1992) has
been utilized to solve the governing equations.

To encourage high-amplitude oscillations, the structural damping coefficient is
assigned a zero value and an oscillator with very low non-dimensional mass (M =4.73)
is considered. The cylinder is allowed to vibrate in both transverse and in-line
directions. First, computations for a system with fixed mass and natural frequency,
fn, are carried out for various Re. In this case, the reduced natural frequency,
Fn = fnD/U∞, varies inversely with Re. Here, D is the diameter of the cylinder and
U∞ the free-stream flow speed. To investigate the effect of Re and Fn independently
two sets of computations are carried out. In the first the Reynolds number is fixed
(Re =33) and the reduced velocity, (U ∗ = 1/Fn) is varied. In the second, the reduced
velocity of the system is fixed at U ∗ = 7.84 (Fn = 0.1275) and the effect of Reynolds
number (15 � Re � 90) is investigated.

2. The governing equations
2.1. The flow equations

Let Ωt ⊂ IRnsd and (0, T ) be the spatial and temporal domains respectively, where nsd

is the number of space dimensions, and let Γt denote the boundary of Ωt . The spatial
and temporal coordinates are denoted by x and t . The Navier–Stokes equations
governing incompressible fluid flow are

ρ

(
∂u
∂t

+ u · ∇∇∇u − f
)

− ∇∇∇ ·σσσ = 0 on Ωt for (0, T ), (2.1)

∇∇∇ · u = 0 on Ωt for (0, T ). (2.2)

Here ρ, u, f and σσσ are the density, velocity, body force and the stress tensor, respec-
tively. The stress tensor is written as the sum of its isotropic and deviatoric parts:

σσσ = −pI + T, T = 2µεεε(u), εεε(u) = 1
2
((∇∇∇u) + (∇∇∇u)T ), (2.3)

where p and µ are the pressure and dynamic viscosity, respectively. Both the Dirichlet
and Neumann-type boundary conditions are accounted for, represented as

u = g on (Γt )g, n ·σσσ = h on (Γt )h, (2.4)

where (Γt )g and (Γt )h are complementary subsets of the boundary Γt and n is its unit
normal vector. The initial condition on the velocity is specified on Ωt at t = 0:

u(x, 0) = u0 on Ω0, (2.5)

where u0 is divergence free.

2.2. The equations of motion for a rigid body

The rigid body motion due to the fluid forces acting on it, in the two directions along
the Cartesian axes, is governed by the following equations:

Ẍ + 4πFnζ Ẋ + (2πFn)
2X =

2CD

πM
for (0, T ), (2.6)

Ÿ + 4πFnζ Ẏ + (2πFn)
2Y =

2CL

πM
for (0, T ). (2.7)
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Here, ζ is the structural damping coefficient while CL and CD are the instantaneous
lift and drag coefficients for the body, respectively. The springs in both the transverse
and in-line directions are assumed to be linear and with the same stiffness. The non-
dimensional mass of the body is defined as M =4m/(πρD2) where m is the actual
mass of the oscillator per unit length and ρ is the density of the fluid. The free-stream
flow is assumed to be along the x-axis. Ẍ, Ẋ and X denote the normalized in-line
acceleration, velocity and displacement of the body, respectively, while Ÿ , Ẏ and Y

represent the same quantities associated with the cross-flow motion. The displacement
and velocity of the cylinder are normalized by D and U∞, respectively.

3. Finite-element formulation
To accommodate the motion of the cylinder and the deformation of the mesh,

the deforming spatial domain/stabilized space-time (DSD/SST) method (Tezduyar
et al. 1992a, b; Singh & Mittal 2005) is utilized. Equal-in-order basis functions for
velocity and pressure that are bilinear in space and linear in time are used. The
nonlinear equation systems resulting from the finite-element discretization of the flow
equations are solved using the generalized minimal residual (GMRES) technique in
conjunction with diagonal preconditioners. A global linear stability analysis of the
combined equation system for the flow and cylinder motion is also carried out using
a finite-element formulation similar to that described in Mittal & Kumar (2003). For
the stability analysis, the governing equations for the flow are written in a frame
of reference attached to the body. First, the steady-state solutions at various Re,
for the stationary cylinder, are obtained by solving the governing equations without
the unsteady terms. The linear stability analysis of these steady states involves the
solution to an eigenvalue problem. A sub-space iteration procedure in conjunction
with shift-invert transformation is utilized. The real part of the rightmost eigenvalue
gives the growth rate of the most unstable mode, while the imaginary part is related
to the vortex-shedding/cylinder vibration frequency.

4. The problem description
4.1. Boundary conditions

A no-slip condition is applied to the velocity at the cylinder boundary. The location
and velocity of the cylinder are updated at each nonlinear iteration via the solution
to the equations of motion for the oscillator. Free-stream values are assigned for
the velocity at the upstream boundary. The viscous stress vector is set to zero at
the downstream boundary. On the upper and lower boundaries, the component of
velocity normal to and the component of stress vector along these boundaries are
prescribed zero value.

4.2. Finite-element mesh and the mesh moving scheme

The finite-element mesh used for most of the computations in this paper consists of
24 604 nodes and 24 230 quadrilateral, four-noded elements. We refer to this mesh as
M24k. The cylinder resides in a computational domain whose outer boundary is a
square of edge length 100D. The upstream, downstream and lateral boundaries are
each located at Ho = 50D from the centre of the cylinder.

A mesh moving scheme, in conjunction with the space–time method, is used that
does not require any ‘remeshing’ and, consequently, is devoid of projection errors. The
mesh consists of two major parts: that between the cylinder and a square box of edge
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Mesh Nodes Elements Ho St Y X CLmax
CD

M24k 24 604 24 230 50D 0.1124 0.605 0.0086 0.3240 2.009
M46k 46 410 45 900 50D 0.1122 0.599 0.0083 0.3104 2.007
M41k 41 680 41 175 100D 0.1122 0.604 0.0086 0.3268 1.998

Table 1. Re= 25 flow past a freely vibrating cylinder: summary of the finite-element mesh,
aerodynamic coefficients and cylinder oscillation amplitudes.

length 7D and the rest that fills in the volume between this square box and the outer
boundary. The location of the outer boundary is fixed. The mesh around the cylinder,
in the square box, moves along with it as a rigid body. With this arrangement, the
movement of the cylinder causes deformation of only the elements lying between the
square region and the outer boundary. More details on the mesh moving scheme can
be found in Mittal & Kumar (1999).

5. Validation of method and convergence of results
5.1. Flow past a stationary cylinder

To ascertain the accuracy of the formulation and its implementation, computations are
carried out for flow past a stationary cylinder for Re =45, 50 and 100. Computations
for Re =45 result in a stable and steady flow even when the flow is perturbed. An
unsteady solution is realized for Re =50 and 100. For the Re =50 flow, the mean
drag coefficient (CD), amplitude of lift coefficient (CLmax

) and Strouhal number (St),
for the fully developed unsteady flow, are 1.416, 0.0499 and 0.123, respectively. St

is based on the time variation of the lift coefficient. The corresponding values for
the Re =100 flow are 1.33, 0.326 and 0.163. These values are in good agreement
with those reported by other researchers. For example, Henderson (1995) reports
CD = 1.35. The experimental value of St reported by Williamson (1989) is 0.1648
for parallel shedding, while Kravchenko, Moin & Shariff (1989) and Persillon &
Braza (1998) report St = 0.164 from their simulations. The value for CLmax

reported
by Kravchenko et al. (1989) is 0.314.

5.2. Effect of the size of the computational domain and the finite-element mesh

The effect of mesh resolution and the location of the outer computational boundary,
for a vibrating cylinder, is investigated. The Re =25 case is chosen for the study, as
it is associated with close to maximum amplitude of cylinder oscillations (figure 1).
The details of the finite-element mesh and a summary of the results obtained are
given in table 1. Meshes M24k and M46k have the same domain size. However, the
spatial mesh resolution is higher in M46k, especially close to the cylinder. M24k and
M41k have comparable spatial resolution. However, for M41k, the computational
boundaries are located at Ho = 100D from the centre of the cylinder. It is seen that
all the results are in good agreement. This reflects the adequacy of mesh M24k in
computing these flows.

6. Vortex-induced vibrations
To encourage high-amplitude oscillations, the structural damping coefficient is set

to zero. The non-dimensional mass of the cylinder is M = 4.73. The reduced natural
frequency of the spring–mass system is Fn = 3.1875/Re. Recall that St ∼ 0.12 at
Rec0 ∼ 47. Fn = 0.12 is realized at Re ∼ 26.6. Such a set-up is chosen in the hope that
the aeroelastic instability might be excited for Re <Rec0.
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Figure 1. Flow past a freely vibrating cylinder with Fn = 3.1875/Re: amplitude of the cylinder
response (normalized with its diameter) and the vorticity field at various Re. Contour lines in
white correspond to positive vorticity while those in black denote negative vorticity.

6.1. Overview

Figure 1 shows the response of the cylinder at various Re, together with the vorticity
fields at selected values of Re. The cylinder exhibits self-excited oscillations beyond
Re ∼ 21.7. The maximum amplitude is achieved at Re ∼ 26 and the cylinder ceases to
vibrate beyond Re ∼ 34. As expected, the amplitude of transverse oscillations is much
larger than in-line oscillations. The strength of the shed vortices correlates well with the
oscillation amplitude of the cylinder. Clearly, compared to rigid supports, the elastic
supports result in a significantly lower Rec for the onset of vortex shedding. This is in
line with the findings of Cossu & Morino (2000) from their global stability analysis
and Buffoni (2003) from experimental observations of forced vibrations of the cylinder.

Figure 2 shows the variation with Re of the non-dimensional frequency of the
transverse vibrations of the cylinder. Also shown are St and Re at the onset of the
instability from the global linear stability analysis (LSA). The critical Re as well as
the corresponding St from the LSA and direct numerical simulations (DNS) are in
excellent agreement. The real and imaginary parts of the most unstable eigenmode
from the LSA at the onset of the instability at both the lower and higher limits of
Re are shown in figure 2 along with the perturbation fields from the DNS. The DNS
solutions shown are those from which the steady-state solution for the stationary
cylinder has been subtracted. The perturbations from the DNS appear quite similar
to the eigenmodes except for the slight asymmetry about the cylinder centreline.
This asymmetry is because of the nonlinear effects at Re = 22 and 33.5, as a result
of finite-amplitude oscillations. The modes of vortex shedding for the oscillating
cylinder are very similar to that observed for a stationary cylinder beyond Rec0 for
Hopf bifurcation (Mittal & Kumar 2003), except for the difference in the shedding
frequency which is reflected in the longitudinal spacing between the vortices.

6.2. Lock-in and the effect of M

Lock-in/synchronization (Williamson & Govardhan 2004) is observed in all the cases:
the cylinder vibration frequency matches the vortex shedding frequency. It is seen
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Figure 2. Flow past a freely vibrating cylinder with Fn = 3.1875/Re: non-dimensional vibra-
tion (and vortex-shedding) frequency and the amplitude of the cylinder response. Also shown
are the perturbation fields from the DNS and the real and imaginary parts of the vorticity
fields corresponding to the most unstable eigenmode at the onset of the instability from the
LSA (Re= 21.93 on the left and Re =33.27 on the right).

from figure 2 that for low M (= 4.73), Fn and St are quite different. It has been
observed in the past for higher Re (Williamson & Govardhan 2004; Mittal & Kumar
1999), that for low M , St for a freely vibrating cylinder does not match Fn. However,
they come closer for higher M . To check whether similar behaviour is observed at
subcritical Re, computations are carried out for a heavier cylinder with M = 50. It is
found that for larger M (= 50), the range of Re where the self-excited oscillations are
observed is smaller but St is closer to Fn. In this respect, VIV at sub- and super-critical
Re show the same behaviour. Interestingly, the peak oscillation amplitude is realized
at different Re for the two values of M and the peak is higher for the heavier oscillator
(figure 1). This is because, for a fixed U ∗, St is different for cylinders with different
M . We will show later that the amplitude of CL experienced by the cylinder depends
not only on its vibration amplitude but also on the frequency of the oscillations.
Consequently, the heavier cylinder experiences a lift coefficient of larger amplitude.

Also shown in figure 2 is the vortex shedding frequency, at various Re, proposed
by Buffoni (2003) through observations for low-amplitude forced vibrations of the
cylinder. Vortex shedding, accompanied by lock-in, was observed in his experiments
for Re beyond 25. There is some difference between the results from his experiments
and the present computations for free vibrations. While his curve represents, at
each Re, the frequency where the vortex shedding is most intense, St in the present
computations is the shedding freqency at certain values of M , Re and Fn.

Unlike at higher Re (Khalak & Williamson 1999) and for Re ∼ 100 (Singh & Mittal
2005) no hysteresis is observed in the present case; the computations with increasing
and decreasing U ∗ lead to the same results as shown in figure 1. The computations
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Figure 3. Flow past a freely vibrating cylinder with Fn = 3.1875/Re: time histories of the lift
coefficient and the cross-flow cylinder response. (a) Re= 25, (b) Re= 33.
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Figure 4. Re = 33 flow past a freely vibrating cylinder: amplitude of the cylinder response
and the vorticity field at various U ∗.

for the increasing/decreasing U ∗ are carried out by using the fully developed flow for
a lower/higher U ∗ as an initial condition. The increment in U ∗ for the study is 0.02.

Figure 2 shows that St ∼ Fn at Re = 33. Despite the forcing and natural frequencies
being same, a low-amplitude response is observed at Re= 33. In comparison, a higher
amplitude response is seen at lower Re even when St and Fn are quite different. The
time histories of the aerodynamic forces and the cylinder motion for Re =25 and 33
are shown in figure 3. It is found that at Re = 33 the lift coefficient and transverse
oscillations of the cylinder are out of phase. They are in phase for Re= 25, where the
cylinder exhibits high-amplitude oscillations. The flow at Re =33 for various U ∗ is
studied in further detail in § 6.3.

6.3. Re = 33, variation with U ∗

A computational experiment is conducted to study the behaviour of the oscillator for
various values of U ∗ while Re for the flow, based on the free-stream speed, is held
constant. The amplitude of the cylinder oscillations and lift coefficient at various
U ∗ is shown in figure 4. The aeroelastic instability is excited for U ∗ > 5.6, reaches a
maximum at U ∗ ∼ 6.5 and ceases beyond U ∗ ∼ 10.4. St, along with the amplitude of
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Figure 5. Re= 33 flow past a freely vibrating cylinder: the the non-dimensional vibration
frequency and amplitude of the cylinder response. Also shown is Fn and the shedding frequency
reported by Buffoni (2003).
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Figure 6. Re= 33 flow past a cylinder with forced vibrations of amplitude 0.25D: amplitude
of the lift coefficient and the vorticity field at various U ∗.

cylinder vibration, is shown in figure 5. As was seen earlier, the cylinder vibration
frequency approaches the natural frequency for larger values of M . There is good
agreement on the onset of the instability from the DNS and LSA. These results explain
the observation in § 6.2 regarding the low amplitude of oscillations for Re= 33. Results
for Re ∼ 100 can be seen in Singh & Mittal (2005). It is expected that the range of U ∗

for which the system exhibits self-excited oscillations and the value of U ∗ at which
peak vibration amplitude is realized varies with Re.

6.4. Forced vibrations, Re =33, Y = 0.25D

It can be noticed on figure 4 that the maximum amplitudes of the lift coefficient and
cylinder vibrations occur at different U ∗. To address this issue, we seek an answer
to a related question: does forced vibration at different frequencies but the same
oscillation amplitude result in the same amplitude of the lift coefficient? Results for
the computations with forced vibrations of the cylinder at fixed amplitude (= 0.25D)
and various frequencies are shown in figures 5 and 6. St for the most intense vortex
shedding from the forced vibration experiments from Buffoni (2003) for low-amplitude
vibrations is also shown in figure 5. In all the cases vortex shedding is observed and
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Figure 8. U ∗ = 7.843 flow past a freely vibrating cylinder: the non-dimensional vibration
frequency and the amplitude of the cylinder response. Also shown is the normalized natural
frequency of the oscillator and results from other researchers.

its frequency matches the oscillation frequency. As seen from figure 6, there is a
significant variation in the amplitude of the lift coefficient with U ∗ including a non-
monotonic behaviour for a certain range of U ∗. This shows that the amplitude of the
lift coefficient depends not only on the amplitude of cylinder vibrations, but also on
the frequency of oscillations. Alternatively, to generate the same CL amplitude for
different U ∗, one would require a different amplitude of cylinder vibrations.

6.5. U ∗ = 7.843 (Fn = 0.1275), variation with Re

Figure 1 shows that the maximum amplitude of cylinder vibrations, when Fn is held
fixed (Fn varies as 1/Re), is achieved for Fn = 0.126. To investigate the effect of Re,
computations are carried out for a fixed value of U ∗. Figures 7 and 8 show the results
of this study. Vortex shedding and cylinder vibrations are observed for Re as low as
∼ 20. It is possible that Rec for an elastically mounted cylinder is even lower than this
value. To identify the exact value, a similar analysis should be carried out for various
values of U ∗ and M . Other than the frequency of vortex shedding, the unsteady flows
at sub- and super-critical Re (for example, at Re =30 and 60) appear quite similar.
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Unlike the previous cases, vortex shedding takes place for all Re> Rec. The maximum
amplitude of transverse vibrations (∼ 0.4D, for M = 4.73) is observed at Re ∼ 40. The
vortex-shedding (and cylinder vibration) frequency is shown in figure 8. The trends in
the variation of St with Re are quite different for the cases with varying versus fixed Fn.
Also plotted in figure 8 are the variations in St for a stationary cylinder and for forced
vibrations. As was observed earlier, the heavier oscillator results in St close to Fn.

7. Conclusions
A stabilized finite-element method has been used to study vortex shedding at sub-

critical Re. Self-excited oscillations, accompanied by vortex shedding, are possible
at Re as low as 20. The results are confirmed via a global linear stability analysis.
Transverse oscillations of amplitude up to ∼ 0.45D have been observed for sub-critical
Re. Lock-in is observed in all cases. However, the mass of the oscillator plays a major
role in determining the range of U ∗ for which the oscillator is self-excited and the prox-
imity of Fn and St. For the same reason, a heavier oscillator may exhibit oscillations
of higher amplitude. Unlike for Re >Rec0, no hysteresis is observed for sub-critical
Re.

Partial support for this work from the Department of Science & Technology, India
is gratefully acknowledged.
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